The Impact of Technology on Assurance

Alan Moore 30 June, 2004

Overview

- Technology Applied to Reduce Risk
- Limitations and Constraints
- External Technology and Impact on Assurance
- Applying New Technologies A New Tool Set
- o Case Studies

Technology

tech-nol-ogy \ n: [Gk technologia systematic treatment of an art] 1: technical language, 2 a: applied science b: a technical method of achieving a practical purpose 3: the totality of the means employed to provide objects necessary for human sustenance and comfort

Webster's Seventh New Collegiate Dictionary, G.& C. Merriam Company, Publishers, 1972

Thermus aquaticus

The large spring above, near Great Fountain Geyser, was the source of the culture of *Thermus aquaticus* that is used to make Taq polymerase, a key constituent of the polymerase chain reaction.

Thomas D. Brock, Biotechnology in Yellowstone,

1994 Yellowstone Association for Natural Science, History & Education, Inc. Yellowstone National Park, Wyoming 82190.

Quantitative PCR Services

Application of Best-Available Methods to Minimize Risk of Contamination

o Cell Substrates: Master Virus Bank

Master Cell Bank

Working Cell Bank

Process: Biological Components

Process Reagents

Excipients

Agents Introduced During Processing

Target: Specific Agents of Concern, "Suspects" and

Unknown Agents

Technologies Applied (ICH Q5A)

Assay System	Primary Intent	Basis/Technology	
In Vitro Virus Assays	Broad Viral Screen	In Vitro Amplification/ Virus isolation and ID	
In Vivo Virus Assays	Broad Viral Screen	In Vivo Replication/ Virus isolation and ID	
Antibody Production Tests (MAP, HAP etc.)	Detection of Known "Suspects"	In Vivo Ab Formation/ Virus isolation and ID	
TEM	Detection of "Suspects" and Unknown Viruses	Structural ID / Staining, Cytopathology	
Biochemical (RT Assays)	Broad Detection Of Retroviruses	RV RT / Retroviral gene function, detection methodology	
PCR	Specific Virus Detection	Specific sequences / Sequence Data	

Technologies Applied (ICH Q5A)

Assay System	Assay Limitation	Practical Limitations
In Vitro Virus Assays	Agents Failing to Replicate	Toxicity, Artifacts
In Vivo Virus Assays	Agents Failing to Replicate	Artifacts, Subclinical symptoms,
Antibody Production Tests	Specific Viral Antigens, Virus-free animals	Serology data, antigen cross-reactivity
TEM	Qualitative Assay	Sample Quality, Complex Equipment
Biochemical (RT Assays)	Optimal Activity Only Under Preferred Reaction Conditions	Interpretation of Background in some Samples
PCR	No Indication of Infectivity	Specific Sequences Required

Integration and Biodistribution Studies

Integration and Biodistribution Studies are required for most DNA vaccines and gene therapy products.

Sensitive and Robust Assays

GLP Compliance

Increasing Efficiency in Throughput and Analysis

Application of Technology

- Use of Well Characterized Cell Lines (Sources)
- Master Cell Banks Produced from Certified Cell Seeds
- Redundant and Overlapping Testing Programs at Various Stages of Production

And Where Applicable,

Use of Viral Inactivation and Removal Processes

Reduction / Limitation of Risk Through Improved Technology

- o Improvements in Biological Reagent Quality Driven by:
- Innovative Products Sans Processes for Agent Removal or Inactivation
- Heightened Safety Concerns (BSE)
- Improved Analytical Methods
- Improved Testing Methods for Reagents
 - M. Barille (CBER) Mycoplasma

Reduction / Limitation of Risk Through Improved Technology

- O Clean in Place / Steam in Place
- Environmental and Facility Controls
- Environmental Monitoring Programs and Equipment
- Closed Reactor Systems, Automation and Disposables

* Challenges Remain for Processes with Limited Processing

"As of February 12, 2001...We know the human genome consists of...

26,588 genes

0.9% Run our Immune System

2.9 % Prevent Tumors

3.3% Allow Cells to communicate with one another

5.0% Build Cells

10.2 % Make enzymes for Chemical Reactions

13.5% Run the Cell Nucleus

We don't know what the other 41.7 % do...but the end count is Likely around 30,000 genes...

You can put them all on a gene chip...

The size of a penny."

External Technology Impacting Assurance

- Advances in Microarray Technology, Real-Time Data Capture and High Throughput Sensor Technology
- Genomics Availability of Sequence Data Provides Understanding of Agents, Gene Expression and Ultimately, "Gene Signatures"
- Advanced Analytical Tools such as "Artificial Neural Nets", "Evolutionary Computation" and "Valuated State Space" are Employed to Evaluate Sequence and Expression Data

Cytomegalovirus (CMV)

Hepatitis A Virus (HAV)*

Epstein-Barr Virus (EBV)

Hepatitis B Virus (HCV)

Human Immunodeficiency Virus Type 1 (HIV-1)*

Hepatitis C Virus (HCV)*

Human Immunodeficiency Virus Type 2 (HIV-2)*

Adeno-Associated Virus (AAV)

Parvovirus B19 (Parvo-B19)

Minute Virus of Mice (MVM)

Specific Genomic Assays Exist

Human Herpes Virus 6

Mycoplasma

Human T-Cell Leukemia Virus Type 1 (HTLV-1)*

Human T-Cell Leukemia Virus Type 2 (HTLV-2)*

Human Herpes Virus 7 (HHV7)

Human Herpes Virus 8 (HHV8)

*RNA Viruses

Assuring the Absence of Unknown or "Unsuspected" Agents

"However, non-specific molecular assays that can be used to low levels of occult, non-retrovirus RNA viruses, DNA viruses, or unusual agents are not available."

In evaluating viruses which may be latent or resident within cells... "This may require the development of non-specific (generic) assays to detect sequences of viruses in these families."

A Defined Risk Approach to the Regulatory Assessment of The Use of Neoplastic Cells as Substrates for Viral Vaccine Manufacture, U.S. FDA, CBER (OVRR) 17 March 2001 (pg 8 and 10) Andrew Lewis, Phillip Krause and Keith Peden

Features of eXpress Profiling

- Multiplexed low cost process
 - Solution-phase RT-PCR
 - High sensitivity (1 to 3 copies/cell/10⁴ cells)
 - Low sample requirements (5 ng total RNA/reaction)
- Patented priming strategy
 - Maximizes dynamic range
 - Maintains relative gene ratio
- Off-the-shelf equipment and reagents
- Fluorescent capillary readout
- High-throughput capability
 PCR run as 20-30 plexes, multiple pooling strategies

New Tool Sets - New QA / QC Paradigms

- Extension of Characterization Battery to Include Assays for Unknown and "Unsuspected" Agents (Characterization as Confirmation?)
- Rapid Real-Time Detection Methods Applied During Manufacture / Processing (Forward Processing)
- Economical Screening of Components / Reagents
- Statistical Sampling Approach and Expansion of Samples Evaluated Through the Process
- Validation and Regulatory Acceptance

Case Study – QPCR for MVM

Contamination Events Led to the Development of Real time QPCR Assays for Detection of MVM:

- Assay Applied as a Screen for "Harvestability"*
- O QC Test for Reagents / Barrier to Contamination*
- Investigation into the Sources of Potential Contamination*
- Viral Clearance Studies of Filters & Chromatography**

^{*} Garnick, R.L., Dev Biol Stand. 1998;93:21-9.

^{**} Zhan, D. et al, Biologicals Volume 30, Issue 4, December 2002, Pages 259-270

Automated Sterility Testing System for Cell Therapy Products

Gary C. du Moulin, Ph.D. Genzyme Biosurgery Cambridge, MA 02139

Autologous Cultured Chondrocyte Manufacturing Process

Indication: Repair injury to articular cartilage

Step 1 - Harvesting Biopsy

Step 2 - Biopsy Processing and Cell Culturing is performed in a Class 10,000 clean room

Autologous Cultured Chondrocyte Implantation

Prior to Implantation

Post Implantation

Challenges in sterility testing for cell therapy and tissue engineered products

- Products have short shelf lives (24-48 hrs)
 - Compendial sterility testing takes 14 days to complete
- Cell suspensions difficult to interpret
 - Cells in media visually turbid and may generate false positive results
- 100% testing of autologous lots
 - Multiple testing points for each lot adds significant cost and product manipulation
- Non-continuous test sample readings
 - Loss of valuable time in notification

Compendial Sterility Testing: A Challenge for Cell Therapy Products

- Short Shelf-life Products
 - 14 day incubation period exceeds product shelf life
 - Carticel® has a shelf-life of 3 days
 - Pre-Release strategy for lot release

Sample No.	Culture Phase	Sample Type	Status of Sterility Test at Product Release
1	Primary Phase	In-Process	Incubated for 14 days. Complete at final assembly
2	Expansion Phase	In-Process	Incubated for 14 days. Complete at final assembly
3	Product Phase	Pre-Release	Incubated for 4 days. Incomplete (10 days remaining)
4	Final Product Phase	Final Product	Incomplete (14 days remaining)

Carticel® Sterility Testing:

Alternatives to Standard Test Methods

- Biological product regulations allow use of "equivalent methods and processes" (21 CFR 610.9) if they are equal to or greater than the assurances provided by the specified method
- Validate to show equivalency by end of Phase III
- Potential approach: perform "old" test concurrent with "new" rapid test to obtain data during product development

Validation Phase I Overview

- Time commitment: 2 years
- Complexity
 - Installation Qualification
 - Operational Qualification
 - Bacteriostasis/Fungistasis
 - Engineering reports
 - Performance Qualification
- Length of Submission: 2048 pages

BacT/Alert System

Colorimetric detection platform

Technology has been available for >10 years

Reliability as a major blood culture

testing system in wide use.

BacT/Alert System Colorimetric Technology

- CO2 Sensor
- Silicon membrane freely permeable to CO2
- Growing organisms produce
 CO2 which diffuses across
 the membrane
- Free hydrogen ions
 interact with the sensor
 resulting in decrease in pH
- Sensor changes from green to yellow

Specificity: Ability to detect a range of Micro-organisms

- Staphylococcus capitis
- Staphylococcus warneri
- Staphylococcus epidermidis
- Pseudomonas aeruginosa
- Streptococcus pyogenes
- Candida parapsilosis
- Propionibacterium acnes
- Clostridium sporogenes
- Penicillium chrysogeum
- Aspergillus niger

Limit of Detection: Staphylococcus warneri

Limit of Detection: Pseudomonas aeruginosa

Conclusion

- Patient specific Cell Therapy and Tissue Engineered products must be supported by quality control testing paradigms that are scalable and compatible with the product characteristics.
- Sterility testing must make use of existing and robust detection platforms that can conform to FDA requirements.
- Alternative testing methods must be validated for specificity, repeatability, limit of detection, ruggedness, and equivalence to the current method
- We believe the BacT/Alert Microbial Detection System can meets the basic requirements to improve sterility testing of cell therapy products and be acceptable as an alternative testing method.

Thank you!